During my studies at the
What I love the most about my profession are the
My main area of expertise are
During the global pandemic, I moved back to Europe and joined the brilliant people at Reality Labs - Research as Research Scientist.
Before the global pandemic, I started as a Simulation Researcher at Weta Digital. I was envolved with solving multiple challenges of developing high-fidelity numerical simulations for the VFX industry, which is truly fascinating and exciting. On top of that, working closely with artists is inspiring, and seeing the result of our teamwork on screen is the greatest reward.
Weta was working on the Avatar sequels at the time, see official poster for Avatar 2 below.
I went to SIGGRAPH Asia '19 with Weta to present my technical paper ScalarFlow.
During my Ph.D., I had an incredible experience as an intern in the Simulation R&D team. Not only is the whole team very smart, kind, funny, and creative, but it was also mind-blowing to immerse into the practices of the visual effects industry. Besides other projects, Weta was working on Alita: Battle Angel during the time.
The following is a still image from the official Alita: Battle Angel trailer.
During my Ph.D. in high-fidelity physics-based simulation with Nils Thuerey, we leveraged the optimization technique fast first-order Primal-Dual method [PCBC09] to solve several complex problems, such as reconstructing both 3D volume and motion of real-world fluid phenomena based on 2D input sequences, which is the inverse problem to forward fluid simulation. We targeted accurate multi-view reconstructions from a sparse number of cameras, which we gathered in our data set ScalarFlow, as well as single-view reconstructions, for which we received the best paper award from SCA'18 as posted on twitter. Furthermore, we developed a flexible fluid guiding method and achieved separating boundary conditions for liquids with a common CG solver. Have a read through my Ph.D. thesis!
Furthermore, I organized the exercises for the lectures "Basics: Algorithms and Data Structures", "Advanced Deep Learning for Physics", and "Simulations for Visual Effects" as well as the seminar "Deep Learning in Physics".
Additionally, I supervised Bachelor's and Master's Theses.
Keywords: physics-based simulation, fluid capture, convex optimization, PDEs, neural networks, deep learning, AI, differentiable solvers, neural solvers
In my Ph.D. Thesis "Optimization for Fluid Simulation and Reconstruction of Real-World Flow Phenomena" [Eck19], I target the improvement of both realism and control of fluid simulations by using convex optimization with the fast first-order Primal-Dual method [PCBC09]. The following three papers were developed in the scope of my Ph.D.: accurate reconstruction of real-world fluid phenomena, the highly under-determined single-view reconstructions of real-world smoke plumes, and efficient fluid guiding and separating solid-wall boundary conditions.
ScalarFlow [EUT19] is the first large-scale data set of accurately reconstructed real-world smoke plumes. We collected more than 100 3D reconstructions in our Data Set.
Besides the data, we present a framework for accurate physics-based reconstructions from a small number of video streams. Central components are a novel estimation of unseen inflow regions and an efficient optimization scheme constrained by a forward simulation.
In order to more flexibly use different recording devices and already available data sets, we propose a
Single-View Reconstruction Method [EHT18] for real-world smoke phenomena. Without any information in the depth direction, the reconstruction problem is heavily under-determined. However, using powerful physical priors and inferring density updates strongly coupled to previous and current estimates of the flow motion, our method produces realistic fluid motions.
We introduce the fast first-order Primal-Dual method [PCBC09] to the fluids community by proposing a solution for two complex problems:
Fluid Guiding and Separating Solid-Wall Boundary Conditions [IEGT17] for liquids. Convex optimization allows us to split complex problems into simpler problems, which are usually easier to solve. Hence, we achieve explicit control over both large-scale motions and small-scale details, and effectively eliminate unrealistic artefacts of fluid crawling up solid walls and sticking to ceilings, while requiring only few changes to existing implementations.
In this Master's Thesis [Eck14], I develop an efficient approach of solving for separating solid-wall boundary conditions for liquids. Allowing for positive normal velocity components at fluid-solid faces forms an inequality constraint and usually transforms the linear equation system for the pressure solve into a Linear Complementarity Problem, which is typically solved by expensive Quadratic Pro-gramming solvers. However, a more efficient approach can be realized by using convex optimization with the alternating direction method of multipliers (ADMM).
During my student's project at Eurecom with Prof. Dr. Jean-Luc Dugelay, we investigated the Impact of Facial Cosmetics on Automatic Face Regognition [EKD13]. Our studies show that contrast-enhancing makeup can increase the accuracy of face recognition, while heavily perceived-shape altering impairs the accuracy, as expected. We provide a data set of several individuals with varying amount and types of makeup.
For my Bachelor's Thesis, we investigated Different Strategies for Application Landscape Integration in Mergers and Acquisitions [EFMRS12]. When two companies unite, the essential question of how to unify the different application landscapes arises. The successful integration is crucial for both maintaining service efficiency but also for the motivation of employees. We interviewed multiple industry experts and developed a metric to compare the most common strategies.
SIGGRAPH Asia, Brisbane, November 2019
Technical paper presentation of "ScalarFlow: A Large-Scale Volumetric Data Set of Real-world Scalar Transport Flows for Computer Animation and Machine Learning" [EUT19]
SCA, Paris, July 2018
Technical paper presentation of "Coupled Fluid Density and Motion from Single Views" [EHT18] - best paper award
Albert-Ludwigs-University Freiburg, May 2017
Invited Talk with Prof. Dr.-Ing. Matthias Teschner about "3D Reconstruction of Volume and Velocity of Real Fluid Phenomena Based on a Single Camera View"
KAUST, April 2017
Technical poster presentation of "Reconstructing Volume and Motion from Real Fluid Phenomena with a Minimal Number of Camera Views", invited by Prof. Dr.-Ing. Wolfgang Heidrich
Eurographics, Lyon, April 2017
Technical paper presentation of "Primal-Dual Optimization for Fluids" [IEGT17]
MMSP, Sardinia, September 2013
Technical poster presentation of "Facial Cosmetics Database and Impact Analysis on Automatic Face Recognition" [EKD13]
SIGGRAPH
SIGGRAPH Asia
Eurographics
Pacific Graphics
Computer & Graphics Journal (CAG)
[Eck19] ECKERT M.-L.: Optimization for Fluid Simulation and Reconstruction of Real-World Flow Phenomena. PhD Thesis (2019).
[EUT19] ECKERT M.-L., UM K., THÜREY N.: ScalarFlow: A Large-Scale Volumetric Data Set of Real-world Scalar Transport Flows for Computer Animation and Machine Learning. ACM Transactions on Graphics 38 (2019).
[EHT18] ECKERT M.-L., HEIDRICH W., THÜREY N.: Coupled Fluid Density and Motion from Single Views. Computer Graphics Forum 37 (2018).
[IEGT17] INGLIS T.*, ECKERT M.-L.*, GREGSON J., THÜREY N.: Primal-Dual Optimization for Fluids. Computer Graphics Forum 36 (2017).
[Eck14] ECKERT M.-L.: Flexible Boundary Conditions in Fluid Solvers Based on Proximal Operators. Master's Thesis (2014).
[EKD13] ECKERT M.-L., KOSE N., DUGELAY J.-L.: Facial Cosmetics Database and Impact Analysis on Automatic Face Recognition. Multimedia Signal Processing (2013).
[EFMRS12] ECKERT M.-L., FREITAG A., MATTHES F., ROTH S., SCHULZ C.: Decision Support for Selecting an Application Landscape Integration Strategy in Mergers and Acquisitions. European Conference on Information Systems (2012).
[PCBC09] POCK T., CREMERS D., BISCHOF H., CHAMBOLLE A.: An Algorithm for Minimizing the Mumford-Shah Functional. International Conference on Computer Vision (2009).
Summer 2019: Fundamentals - Algorithms and Data Structures, Technical University of Munich
Complexity analysis of algorithms; arrays, lists, stacks, queues; hashing; sorting; priority queues, search structures; graphs; pattern matching - the usual basics for computer scientists!
Winter 2018: Seminar Deep Learning in Physics, Technical University of Munich
Overview over deep learning methods for physical problems, such as latent-spaces for physical predictions, generative adversarial networks with temporal coherence, inference of Reynolds-averaged Navier-Stokes flows around airfoils and many more.
Summer 2018: Advanced Deep Learning for Physics, Technical University of Munich
Numerical simulation algorithms for physically-based animation and fluid modeling, discretizations, partial differential equations, and how to learn these for fluids and deformable objects with deep learning techniques, such as generative neural networks and temporal network architectures.
Summer 2017: Deep Learning and Numerical Simulations for Visual Effects, Technical University of Munich
Numerical simulation algorithms for physically-based animation and fluid modeling, discretizations, partial differential equations, and how to learn these for fluids and deformable objects with deep learning techniques, such as convolutional neural networks.
Summer 2016: Simulation for Visual Effects, Technical University of Munich
Fundamentals of physical simulation for visual effects, with a particular emphasis on fluid simulations and elasticity: Discretziation and accuracy, fluid modeling, advection and pressure, single- and multi-phase flow, elasticity modeling, finite element discretization, implicit integration, visualization techniques.
Summer 2015: Simulation for Visual Effects, Technical University of Munich
Fundamentals of physical simulation for visual effects, with a particular emphasis on fluid simulations and elasticity: Discretziation and accuracy, fluid modeling, advection and pressure, single- and multi-phase flow, elasticity modeling, finite element discretization, implicit integration, visualization techniques.
“Learning to Reconstruct Smoke Volumes from Images” – Daniel Frejek, Master’s Thesis, 2019
“Improving a Low-Cost Capturing Process for Reconstructing Volume and Motion of Real Fluid Phenomena” – Daniel Frejek, Guided Research, 2017
“Capturing Real Fluid Phenomena with Raspberry Pi Cameras” – Florian Alkofer, Bachelor’s Thesis, 2017
“GPU-accelerated Stochastic Tomography for 3D Volume Reconstruction of Real Fluid Phenomena” – Tobias Kammerer, Master’s Thesis, 2017
“Optimized Volume Reconstruction for Fluids with Non-Linear Lighting Models” – Tobias Gottwald, Master’s Thesis, 2017
“Experimental Capture of Smoke and Evaluation of Volume Reconstruction Algorithms” – Florian Reichhold, Master’s Thesis, 2016
“Reconstruction of Fluid Volumes Based on Stochastic Tomography” – Dominik Dechamps, Master’s Thesis, 2016
“Modeling 3D Fluid Volumes Based on Appearance Transfer” – Christoph Pölt, Master’s Thesis, 2015
All information on this website - marielenaeckert.com - is published in good faith and for general information purpose only. If you require more information or have any questions about this site's disclaimer, please feel free to contact me.
Views Expressed
This disclaimer informs readers that the views, thoughts, and opinions expressed in the text belong solely to the author, and not necessarily to the author's employer, organization, committee or other group or individual.
Liability
Any action you take upon the information you find on this website, is strictly at your own risk. In no event will we be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from loss of data or profits arising out of, or in connection with, the use of this website.
Errors and Omissions
The author assumes no responsibility or liability for any errors or omissions in the content of this site. The information contained in this site is provided on an "as is" basis with no guarantees of completeness, accuracy, usefulness, or timeliness.
Links
Through this website you are able to link to other websites which are not under the control of the author. While we strive to provide only quality links to useful and ethical websites, we have no control over the nature, content and availability of those sites. The inclusion of any links does not necessarily imply a recommendation or endorse the views expressed within them.
Fair Use
The fair use of a copyrighted work for purposes such as criticism, comment, news reporting, teaching, scholarship, or research is not an infringement of copyright.
Investment
The website and the information contained herein is not intended to be a source of advice or credit analysis with respect to the material presented, and the information and/or documents contained in this website do not constitute investment advice.
Angaben gemäß § 5 TMG
Marie-Lena Eckert
E-Mail: contact[~~]marielenaeckert.com
Haftungsausschluss:
Haftung für Inhalte
Als Diensteanbieter sind wir gemäß § 7 Abs.1 TMG für eigene Inhalte auf diesen Seiten nach den allgemeinen Gesetzen verantwortlich. Nach §§ 8 bis 10 TMG sind wir als Diensteanbieter jedoch nicht verpflichtet, übermittelte oder gespeicherte fremde Informationen zu überwachen oder nach Umständen zu forschen, die auf eine rechtswidrige Tätigkeit hinweisen.
Verpflichtungen zur Entfernung oder Sperrung der Nutzung von Informationen nach den allgemeinen Gesetzen bleiben hiervon unberührt. Eine diesbezügliche Haftung ist jedoch erst ab dem Zeitpunkt der Kenntnis einer konkreten Rechtsverletzung möglich. Bei Bekanntwerden von entsprechenden Rechtsverletzungen werden wir diese Inhalte umgehend entfernen.
Haftung für Links
Unser Angebot enthält Links zu externen Websites Dritter, auf deren Inhalte wir keinen Einfluss haben. Deshalb können wir für diese fremden Inhalte auch keine Gewähr übernehmen. Für die Inhalte der verlinkten Seiten ist stets der jeweilige Anbieter oder Betreiber der Seiten verantwortlich. Die verlinkten Seiten wurden zum Zeitpunkt der Verlinkung auf mögliche Rechtsverstöße überprüft. Rechtswidrige Inhalte waren zum Zeitpunkt der Verlinkung nicht erkennbar.
Eine permanente inhaltliche Kontrolle der verlinkten Seiten ist jedoch ohne konkrete Anhaltspunkte einer Rechtsverletzung nicht zumutbar. Bei Bekanntwerden von Rechtsverletzungen werden wir derartige Links umgehend entfernen.
Urheberrecht
Die durch die Seitenbetreiber erstellten Inhalte und Werke auf diesen Seiten unterliegen dem deutschen Urheberrecht. Die Vervielfältigung, Bearbeitung, Verbreitung und jede Art der Verwertung außerhalb der Grenzen des Urheberrechtes bedürfen der schriftlichen Zustimmung des jeweiligen Autors bzw. Erstellers. Downloads und Kopien dieser Seite sind nur für den privaten, nicht kommerziellen Gebrauch gestattet.
Soweit die Inhalte auf dieser Seite nicht vom Betreiber erstellt wurden, werden die Urheberrechte Dritter beachtet. Insbesondere werden Inhalte Dritter als solche gekennzeichnet. Sollten Sie trotzdem auf eine Urheberrechtsverletzung aufmerksam werden, bitten wir um einen entsprechenden Hinweis. Bei Bekanntwerden von Rechtsverletzungen werden wir derartige Inhalte umgehend entfernen.
Datenschutz
Die Nutzung unserer Webseite ist in der Regel ohne Angabe personenbezogener Daten möglich. Soweit auf unseren Seiten personenbezogene Daten (beispielsweise Name, Anschrift oder eMail-Adressen) erhoben werden, erfolgt dies, soweit möglich, stets auf freiwilliger Basis. Diese Daten werden ohne Ihre ausdrückliche Zustimmung nicht an Dritte weitergegeben.
Wir weisen darauf hin, dass die Datenübertragung im Internet (z.B. bei der Kommunikation per E-Mail) Sicherheitslücken aufweisen kann. Ein lückenloser Schutz der Daten vor dem Zugriff durch Dritte ist nicht möglich.
Der Nutzung von im Rahmen der Impressumspflicht veröffentlichten Kontaktdaten durch Dritte zur Übersendung von nicht ausdrücklich angeforderter Werbung und Informationsmaterialien wird hiermit ausdrücklich widersprochen. Die Betreiber der Seiten behalten sich ausdrücklich rechtliche Schritte im Falle der unverlangten Zusendung von Werbeinformationen, etwa durch Spam-Mails, vor.
Marie-Lena Eckert
contact[~~]marielenaeckert.com